Considering software quality requirements as
networked business quality requirements

Vincent Pijpers & Jaap Gordijn

Free University, FEW /Business Informatics, De Boelelaan 1083a, 1081 HV
Amsterdam, The Netherlands. (v.pijpers, gordijn)@few.vu.nl.

Abstract. Over the years, research on software architecture has identi-
fied architectural styles. In this paper we consider five of such styles, and
analyze whether these styles can also be found in business value models
for networked enterprises. To this end, we analyze 17 e®value models,
as discussed in 29 academic papers or book chapters. We also consider
whether the quality attributes related to the software architecture styles,
are also relevant for e3value models. To demonstrate the relevance of our
findings we present a case study.

1 Introduction

Today, Requirements Engineering (RE) increasingly treats context of informa-
tion systems as a first-class-citizen to rationalize Information System (IS) re-
quirements, and moreover, to properly align and trace IS requirements with
business requirements. Examples of context-aware RE approaches include goal
modeling (eg. i* [33]), problem framing [15], value modeling [9,23], and strategic
business modeling [27].

Understanding of the context of an information system often comprises un-
derstanding of enterprises. These enterprises are not only the enterprises using
the information system, but also related enterprises, forming a network to sat-
isfy complex consumer needs. Such networks, today largely enabled by IT, are
referred to as networked value constellations [30], and are an important part of
an enterprise’s context.

In this paper, we focus on a single requirement engineering technique for
analyzing context of multi-enterprise information systems: namely e3value . The
e3value approach is used to explore the business context of networked value con-
stellations with the aim to create a shared understanding of the business context,
to do a financial analysis for early feasibility assessment, and to scope the re-
quirements engineering process for information systems themselves, supporting
the networked value constellation at hand. To this end, the e?value approach
has been used in combination with other requirements engineering techniques
(eg. i* [13], UML deployment diagrams [7,26] and UML activity diagrams [25]).

In a way, an e3value model can be seen as a very early “functional” require-
ment expression. An e3value model states the objects/services of economic value,
enabled by IT, that are transferred between enterprises, and what these enter-
prises request in return for doing so. However, in general, it has been widely

recognized that non-functional, or quality, requirements are an important class
of requirements too. These can not be really identified with e3value yet.

There is however a significant body of knowledge on how to express qual-
ity requirements for information systems themselves. Examples of quality re-
quirements in IS are requirements about reusability, modifiability, integrata-
bility, portability, and scalability. In this paper, we analyze, by revisiting 17
published e3value case studies, whether the aforementioned IS quality require-
ments can also be meaningfully identified in e3value models. If we can identify
such requirements, this can be considered as the first step to arrive at a more
comprehensive theory on quality requirements, not only considering informa-
tion systems, but also spanning business value considerations. This is the main
contribution of this paper.

To identify quality requirements, we use five known architectural styles found
by [3] in information system architectures. If we find sufficient support for the
existence of these architectural styles in the e®value models and the related qual-
ity requirements, we then can use styles in e?value models to identify relevant
quality requirements. We illustrate this with a case study in which we (1) show
why quality requirements are relevant to identify and (2) how these quality re-
quirements can be found by exploiting architectural styles.

This paper is constructed as follows: first we discuss the e3value approach.
Then, we introduce our view on notions such as architectures, architecture styles
and quality requirements. Hereafter we will discuss each of the architectural
styles and how they are relevant for evalue models. For each style an actual
e3value model will be shown as example. Next we will provide a small case
study on how architectural styles in e3value models can be used. We will end
with reflecting on the results, forming conclusions and, making suggestions for
further research.

2 The e*value approach

To be self-contained, we give a brief overview on e?value . The approach is
discussed in detail in [9]. The e3value approach provides modeling constructs
for representing and analyzing a network of enterprises, exchanging things of
economic value with each other. The methodology is ontologically well founded
and has been expressed as UML classes, Prolog code, RDF/S, and a Java-based
graphical e3value editor as well as analysis tool is available for download (see
http://www.e3value.com). We use an educational example (see Fig. 1) to explain
the model constructs.

Actors (often enterprises or final customers) are perceived by their envi-
ronment as economically independent entities, meaning that actors can take
economic decisions on their own. The Store and Manufacturer are examples of
actors. Value objects are services, goods, money, or information, which are of
economic value for at least one of the actors. Value objects are exchanged by
actors. Value ports are used by actors to provide or request value objects to or
from other actors. Value interfaces, owned by actors, group value ports and show

Payment [MONEYi [Retailing J\r y [MONEY)]

e 1@

Sh coon] Y [GooD)
opper TS T Manufacturer|

tore

Activity (Consumer| Connect.Boundary| Value Value Value | Value AND OR
Legend need | element| element | object e interface| port |Transfer| element| element
D @ m—— [...] (=) V| — === -

Fig. 1. Educational example

economic reciprocity. Actors are only willing to offer objects to someone else, if
they receive adequate compensation in return. Either all ports in a value inter-
face each precisely exchange one value object, or none at all. So, in the example,
Goods can only be obtained for Money and vice versa. Value transfers are used
to connect two value ports with each other. It represents one or more potential
trades of value objects. In the example, the transfer of a Good or a Payment are
both examples of value transfers. Value transactions group all value transfers
that should happen, or none should happen at all. In most cases, value transac-
tions can be derived from how value transfers connect ports in interfaces. Value
activities are performed by actors. These activities are assumed to yield profits.
In the example, the value activity of the Store is Retailing. Dependency paths
are used to reason about the number of value transfers as well as their economic
values. A path consists of consumer meeds, connections, dependency elements
and dependency boundaries. A consumer need is satisfied by exchanging value
objects (via one or more interfaces). A connection relates a consumer need to a
value interface, or relates various value interfaces internally, of a same actor. A
path can take complex forms, using AND/OR dependency elements. A depen-
dency boundary represents that we do not consider any more value transfers for
the path. In the example, by following the path we can see that, to satisfy the
need of the Shopper, the Manufacturer ultimately has to provide Goods.

3 Architecture, Styles and Quality Attributes

The aim of this paper is to identify architectural styles and related quality at-
tributes in e3value models. To this end, we elaborate first on the notions of
architecture, architectural styles, and quality attributes themselves.

Architecture. An architecture is a structure that consists of elements and re-
lations between these elements, which together create a coherent system that
provides value to its environment [14,32]. Although this conceptualization of ar-
chitectures is mainly used to describe information systems, the conceptualization
is sufficiently broad enough to capture processes, leading to a process architec-
ture [24] and business value (cf. e3value) models, as done in this paper. An

e3value model states the structure of enterprises (elements) and economic value
transfers (relations) of a networked value constellation, which together creates a
coherent system which provides value to its environment, and consequently can
be considered as an architecture.

Architecture style. Architectures can have similar features and therefore may
have a same style [3]. A number of specific architectural styles can be distin-
guished, but in this paper we will limit ourselves to five styles identified by [3]:
Independent Components, Data Flow, Data Centered, Virtual Machine and, Call
and Return. Each style has its own unique features determined by the follow-
ing [3]: (1) a set of component types that perform some function, (2) a topologi-
cal lay-out of the components, indicating their relationship, (3) a set of semantic
constraints and, (4) a set of connectors that mediate the communication. We
will discuss each architectural style more elaborate in the next sections.

It is possible that an architecture has multiple styles [3]. Styles can be: (1)
locationally heterogeneous, meaning that an architecture will reveal different
styles in different locations, (2) hierarchically heterogeneous, meaning that a
component of one style is structured according to the rules of another style and,
(3) simultaneously heterogeneous, meaning that any of several styles may well
be an apt description of the architecture.

Quality Attributes. Quality attributes are non-functional requirements which an
architecture’s elements must satisfy to give the elements meaning [28,31]. For
example, the quality attribute “reuse” specifies that an actor (eg. a baker) must
be able to reuse a value object (eg. flour) in an other stage (when baking bread).
If the baker could not reuse the flour after purchasing it, then the function of
the flour has no meaning for the baker. Although quality attributes are often
vague, they do provide guidelines and goals for a system’s design [3].

In the literature, various relations are mentioned between quality attributes
and architecture styles [2,3,31]. Architecture styles can be used for requirements
engineering purposes to identify quality attributes needed by an architecture’s
elements and objects [3,28]. When architecture styles are identified in an archi-
tecture, they indicate the quality attributes needed by the elements and objects.

4 Matching Information System Styles to e3value Styles

For the five identifies architectural styles (Independent Components, Data Flow,
Data Centered, Virtual Machine and, Call and Return) in Information Systems,
we now analyze whether these styles can also be meaningfully identified in the
17 e3value case studies as published in the past. For each style, we first give the
original Information System interpretation and then we analyze how the style
can be identified e3value models.

4.1 Architectural Style: Data Flow

In information systems. The data flow architectural style is characterized by
viewing a system as separate parts (elements) which perform operations on suc-

[MONEY) £ Siore A MONEY]
[(] [

[Good] f Ef [Good]

Shopper

(2"

®

Fig. 2. (a) data flow architecture style, (b) data flow in ¢*value

cessive pieces of input (objects) [3] (See Fig. 2a). The output of one part is the
input for the next part. The quality attributes related to this architectural style
are [3]:

— Reusability, stating that an element can be easily reused, for which it is
necessary that elements agree on the type of received and produced objects.
— Modifiability, stating that elements can be easily added, removed or replaced.

In e value. We identified the data flow architecture style in evalue models by
searching for value objects which were transferred between successive actors
(see Fig. 2b). The data flow architecture style was found in the following e*value
models [6,8,13,17,29].

The quality attribute modifiability is meaningful for the e3value data flow
architecture style since it very well possible to add or remove elements (ac-
tors), think of forward /backward integration/segmentation [16]. In e3value mod-
els objects are however value objects, which are either goods, service outcomes,
money or (valuable) information. So, the question is whether the quality at-
tribute reusability is also meaningfully for all types of e3value ’s objects?

— Goods. We find the quality attribute meaningful for “goods” (see Fig. 2b).
Here, an actor must be able to (re)use the value object s/he receives before
s/he can offer (output) the object to the next actor.

— Money. Since money can be reused by definition, reusability is meaningful
for this type of value object (Although it might be a obvious given which
does not need to be elicited).

— Service outcomes. Reusability is also meaningful for service outcomes. A
service outcome is the “result” of the execution of a service [1]. This outcome
can be used to offer another actor the same or a similar service (eg. a telecom
operator forwarding Internet acces, received from an ISP, to mobile phone
users).

4.2 Architectural Style: Data Centered

In information systems. The data centered architectural style is characterized
by viewing a system with a central entity, which is widely accessed by various

Contact Contact Searcher Contact
Searcher| Searcher
----- . : EC =CiD=— I
- Ad [MONEY] \ <
S, S - [MONEYN)¢ [MONEY]

d Data

Fig. 3. (a) data centered architecture style, (b) data centered in ¢*value

other entities [3] (See Fig. 3a). The various other entities place and retrieve all
objects from a central entity. The central entity is able to integrate the various
objects, such that a coherent system is created. The quality attributes related to
this architectural style is [3]:

— Integratability, stating that the various object transferred to the central en-
tity must be integratable to form either a new product or form a consistent
storage area.

In e3value. We identified the data centered architecture style in e?value models
by searching for various value objects which were transferred to a single actor,
whom used these value objects to offer a (new) value object. Fig. 3b provides an
example e>value model in which the data centered style can be found. In this
e3value model, “ads” are centralized and integrated into a single actor. The data
centered architecture style was found in the following e3value models [7,11,12,
18).

The question is whether integratability is meaningful for all possible value
objects (money, goods and, service outcomes) in an e3value model. For all these
value objects the quality attribute integratability is indeed meaningful.

— Goods. If a central actor acquires various parts (goods) from various actors
to create a new good, then the various must be integrated to create the new
good (eg. manufacturing a car).

— Money. The same holds for money, it is the very nature of money that various
(small) amounts can be integrated to create a larger amount.

— Service outcomes. Services, and their outcomes, can also be integrated (eg.
service bundling [1]). If one of the service outcomes is not integratable with
the other service outcomes, then the service bundle obviously cannot be
created, making the quality attribute also meaningful for service outcomes.

Wind turbine [operational flex.]

[MONEY]

[IP access]

Y MONEY]

[MONEY]— (ele;lricity] [MONEY] = operational flex.]]

Wholesale Supplier

Market Operator

Market
Management

%)
[operational flex..
[electricity]
i

Emergency generator |
(o]

peration Control
[; —]]
© ©ep ¢
Generation (T

\ P
- [electricity]
[MONEY]

Fig. 4. Independent component in e3value

4.3 Architectural Style: Independent Components

In information systems. The independent component architectural style is char-
acterized by viewing a system as independent components which exchanges ob-
jects with each other [3]. Basically an operation is divided in to smaller parts
and distributed over various components of the system. The quality attributes
related to this architectural style is [3]:

— Modifiability, stating that it is (relative) easy to modify one of the com-
ponents without affecting the rest of the system because all parts operate
independent on a specific part of the operation.

In evalue. To find this style in evalue we searched for e3value models which
as a whole provide a product/service to their environment. Each of the actors
is responsible for a specific activity of this product/service. Fig. 4 provides an
example layout. The e3value model shows a balancing system for an electricity
marketplace. Various actors perform different functions to create the balancing
system. The system as a whole is therefore easily modifiable. The independent
component architecture style was furthermore clearly identified in the e3value
models in [7,10,17,19, 26].

Does modifiability also hold for e3value architectures? If we take Fig. 4b) as
an example we can see that various component (actors) perform unique activ-
ities and exchange various value objects. From a business value perspective it
would be relative easy to modify this architecture be adding/removing actors
are differently distributing value activities over the actor. This indicates that

— Joint
Llopws Data i Program Bein Actor 1 Venture
i (Program State) Interpreted i Activity
0: T, o
ata Updates .‘§‘l:t: .Dau ;lzq“x -
N‘\\.\
Outputs pretat Selected Instruction Intenal ;
Engine Selected Data State Actor 2
A%
oD
(@ ®) }

Fig. 5. (a) virtual machine architecture style, (b) virtual machine in e3value

the quality attribute modifiability is indeed meaningful for this types of e3value
models.

4.4 Architectural Style: Virtual Machine

In information systems. The virtual machine architectural style is characterized
by viewing a system which simulates some functionality and is not native to one
of the components of the system [3] (see Fig.5a). The system simulates, using
functions of various components, a system which has no physical properties. The
quality attributes related to this architectural style is [3]:

— portability, meaning that the system is not bound to a specific platform /
location to offer its service.

In e3value. In terms of enterprises, virtualization may refer to the notion of
virtual organizations. Although the term virtual organization is often used in
literature on e-businesses [4], it is not a common style found in e3value models.
Still it is possible to design a virtual organization (the virtual system) which sim-
ulates some functionality based on the functions of the underlying components.
Examples are joint-ventures which do exist on paper but not in the physical
physical. Furthermore, these joint ventures offer value objects which are not
native to one of the actors. This is also shown by [22] in which the virtual ma-
chine architecture style was clearly identified. Fig. 5b provides the e3value model
of [22]. The model shows how joint-ventures, without physical presence, can be
modeled in an e*value model.

The quality attribute “portability” is relevant for such e3value models. Since
these virtual organization mostly exist on paper, it can be very well possible
that the physical organizations forming the virtual organization desire to “re-
locate” their virtual organization to other countries (eg. due to changing (tax)
regulations).

TPG division mail
Member TPG MKB

of BO fee provide
| easy response
(R # - LAt~y cards
J easy response card @
u‘. A provide
e+ Pard-,

customized stamps ‘! stamps
j audience audionco I ©)

online DM
Information
provisioning

Information
provisioning

fee design

‘ white labeled /
e....&—.’.—a PM-cards O35
\ \] i
0"{'“"5 DM-cards
[

DM information DM information

®

Fig. 6. (a) call & return architecture style, (b) call & return in e*value

4.5 Architectural Style: Call & Return

In information systems. The call and return architectural style is characterized
by viewing a system as a main entity which can call smaller sub-entities to
perform an action. The outcome of this action is returned to the main entity
(see Fig. 6a). The quality attributes related to this architectural style are [3]:

— Modifiability, indicating that one of the sub-systems can be easily modified
without influencing other (sub)-systems.

— Scalability, indicating that the system can handle an increased or decreased
in the number of users, without affecting the function of system.

In e3value. To find this architectural style in e3value , we had not to examine the
networked value constellations modeled in e3value models per se, but look more
at individual actors within a networked value constellation. Often one actor is
composed out of various smaller “actors”, or departments, and value activities.
The ‘main’ actor requests (call) value objects from the smaller actors, which
they provide (return). The call & return architecture style was clearly identified
in the e*value models in [5, 20, 21]. Fig. 6b provides the e3value model found
n [21]. This model shows a main actor/entity (TPG) which calls upon smaller
entities (TPG, MKB and Cendris) to perform (return) services, TPG in turn
can offer combinations of these services to the outside world.

Do the quality attributes modifiability and scalability have meaning for such
an e3value system?

— As can been seen in the example e3value model 6b) if one of the sub-actors
or value activities is removed then the other entities are not, or barely, af-
fected (eg. they are not connected via dependency paths or (internal) value
transfers). This indicates that an e3value model with this style is easily mod-
ifiable.

— The scalability of such an e3value model can be easily affected by adding
/ removing (sub)-actors to meet the increased demand of consumers. For
instance, if “Cendris” is unable to able to print sufficient “DM-cards”, TPG
could hire an external organization to print additional “DM-cards” (basically
TPG ads another sub-system).

Style Constituent Parts Quality Attributes Found In
Topology Components Connectors Quality Relevant for
Data Star Actors Value transfers Reusability, Value [6,8,13,17,29]
Centered Modifiability objects
Data Flow Linear Actors, Value Transfers, |Integratability Value [7,11,12,18]
value activities Dependency paths objects
Independent|Arbitrary Actors Value Transfers | Modifiability Actors [7,10,17,19,26]
Component
Virtual |Arbitrary Actors, Value transfers Portability Actors [22]
Machine joint ventures
Call & |Hierarchy Actors, (Internal) value | Modifiability, Actors [5,20,21]
return value activities transfers Scalability

Table 1. Overview architectural styles

5 How to use architectural styles in e3value models

So far, we have only analyzed if architectural styles could be found in exist-
ing e3value models and if they lead to the identification of meaningful quality
attributes for e>value models. In this section we demonstrate how to find ar-
chitectural styles in an e3value model and how related quality attributes can be
used by organizations to get better understanding of their business value context.

Case Study. Mobzilli is an Internet company offering the service “location based
advertisement” (www.mobzilli.com). This service offers organizations the possi-
bility to bound advertisements to geographical locations. Potential customers can
request the advertisements utilizing a small application on their mobile phone.
So if a customer would be in a shopping center s/he would be able to request
the advertisements of the shops in her/his vicinity using her mobile phone.

The e3value model. Fig. 7 provides the e3value model for Mobzilli. We do not
elaborate on the design process of this model in this paper. The model shows

Vendor B

@

[Soﬁ/wa] [MONI
/ [Promotion]-| | [Software] \ \
IF ion) A [Sonmubwehpmentl
Merchants [MONEY] S
T r(----@ b _: (
i m a [Statlsncsl Mobzilli
e- !" "} HMONEYT
‘(\i)— [Advertisment Channel]
[vrews] [ads] [Promotmn],—T[smware]
[MONEY] Telecom
[I et S NN ST S [MONEY] Provider
& F——e—g. G N
v [Product] T N —) [Mobile Intemet)] @)

Fig. 7. Mobzilli e®value model

that Mobzilli acquires a piece of (open-source) software from “Vendor A” and
another piece of (open-source) software from “Vender B”. Furthermore, Mobzilli
hires “Software Developers” to create additional software and integrate all the
pieces of software. Mobzilli offers their service to “Merchants”, who pay for this
service and provide “Ads”. Mobzilli transfers these “Ads” to “Mobile Users”.

Finding styles. In Mobzilli’s evalue model, it can be seen that the value objects
“Software” (twice) and “Software Development” are acquired by a single actor:
Mobzilli (see blue highlighted area). This lay-out matches the data centered
architectural styles described in section 4.2. The quality attribute related to this
style is integratability. As a result, the value objects “Software” and “Software
Development” must meet the quality attribute integratability to have meaning
to Mobzilli.

There is a second architectural style visible in Mobzilli’s e3value model (green
highlighted area). The value object “Ads” is first transferred from “Merchants”
to Mobzilli and then from Mobzilli to “Mobile users”. This layout matches the
architectural style data-flow described in section 4.1. Although this is a very
small of example of this style, a successive piece of information is still trans-
ferred between actors and is reused by an actor (it is changed from a normal
advertisement into an advertisement suitable for mobile users). The quality at-
tributes related to this style, and thus the value object “Ads” is reusabability.

Quality Attribute Requirements. The e3value model for Mobyzilli seems to be fi-
nancially feasible, but for this configuration to be meaningful, other requirements
must be met, namely the aforementioned quality attributes:

— Integratability. If the value objects “Software” from “Vendor A”, “Software”
from “Vendor B”, and “Development” from “Software Developers” are not
integratable, Mobzilli will not be able to offer its service.

— Reusability. If the value object “Ads” acquired from “Merchants” is not
reusable (eg. proper file format) by Mobuzilli, then Mobzilli is not able to
forward the “Ads” to “Mobile Users”. This would make their service obsolete.

So, we were able to find architectural styles in Mobzilli’s e3>value model which
were used to identify meaningful quality attributes. For Mobzilli to make their
service meaningful they must meet these requirements to avoid problems in later
stages of IS development.

6 Conclusion

In this paper we have shown that we were able to identify architectural styles
in e3value models. In addition, we were able to use these styles to find mean-
ingful quality attributes for value objects and actor in e3value models. By using
the work of [3] on architectural styles we were able to find five similar styles
in most e*value models created between 1999 and 2007. In addition, we have
shown why and how quality attributes related to the five architectural styles are
also meaningful for e3value models. Furthermore, we have demonstrated with a
small case study how we can use architectural styles in e3value models to rea-
son about quality attributes during the early stages of requirements engineering.
This early-phase requirements engineering should aid in not only a better busi-
ness configuration but should also lead less problems in later stages [33].

The next logical step would be to formalize the styles exactly and determine
if more styles and related quality attributes can be found in e3value models.

Acknowledgments The authors wish to thank Wojtek Chowanski and Reza Lad-
chartabi from Mobzilli for providing case study material and for having many
fruitful discussions. This work has been partly sponsored by NWO project COOP
600.065.120.24N16.

References

1. H. Akkermans, Z. Baida, and J. Gordijn. Value webs: Ontology-based bundling of
real-world services. IEEE Intelligent Systems, 19(44):23-32, July 2004.

2. J. Asundi, R. Kazman, and M. Klein. Using economic considerations to choose
amongst architecture design alternatives. Technical report, Software Engineering
Institute, 2001.

3. L. Bass, P. Clements, and R. Kazman, editors. Software Architecture in Practice,
chapter Moving from Qualities to Architecture, pages 93-121. Addison Wesley,
1998.

4. W.H. Davidow and M.S. Malone. The Virtual Corporation. Harper Business, 1992.

5. Zs. Derzsi and J. Gordijn. Value-based business-ict alignment: A case study of
the mobile industry. In Proceedings of the 12th Research Symposium on Emerging
Electronic Markets (RSEEM), pages 83-95, Amsterdam, (NL), 2005. VU.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Zs. Derzsi and J. Gordijn. A framework for business/it alignment in networked
value constellations. In T. Latour and M. Petit, editors, Proceedings of the work-
shops of the 18th International Conference on Advanced Information Systems En-
gineering (CAiSE 2006), pages 219-226, Namur, B, 2006. Namur University Press.
Zs. Derzsi, J. Gordijn, K. Kok, H. Akkermans, and YH. Tan. Assessing feasibility
of it-enabled networked value constellations: A case study in the electricity sector.
In J. Krogstie, A. Opdahl, and G. Sindre, editors, 19th International Conference,
CAiSE 2007, Trondheim, Norway, June 2007, Proceedings, volume 4495 of LNCS,
pages 66-80. Springer Verlag, 2007.

J. Gordijn. E3value in a nutshell. Technical report, HEC University Lausanne,
2002.

J. Gordijn and H. Akkermans. Value based requirements engineering: Explor-
ing innovative e-commerce idea. Requirements Engineering Journal, 8(2):114-134,
2003.

J. Gordijn and H. Akkermans. Business models for distributed energy resources in
a liberalized market environment. The FElectric Power Systems Research Journal,
77(9):11781188, 2007.

J. Gordijn, H. Akkermans, and H. Van Vliet. Requirements for e-commerce appli-
cations are created rather than elicited. In NOSA’99 - Proceedings of the second
nordic workshop on software architecture, 1999.

J. Gordijn and H. De Bruin. Scenario methods for viewpoint integration in e-
business requirements engineering. In Proceedings of the 34th Hawaii International
Conference On System Sciences. IEEE, 2001.

J. Gordijn, E. Yu, and B. Van Der Raadt. E-service design using i* and e3value
modeling. IEEE Software, 23(3):26-33, May 2006.

IEEE Architecture Working Group. Ieee recommended practise for architectural
description of software-intensive systems. IEEFE std 1471-2000, 2000.

Michael Jackson. Problem frames: analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
G. Johnson and K. Scholes. Ezploring Corporate Strategy. Pearson Education
Limited, Edinburgh, UK, 2002.

V. Kartseva, J. Gordijn, and YH. Tan. Analysing preventative and detective control
mechanisms in international trade using value modelling. In M. Janssen, H. Sol, and
R. Wagenaar, editors, Proceedings of the 6th International Conference on Electronic
Commerce, pages 51-18. ACM Press, 2004.

V. Kartseva, J. Gordijn, and YH. Tan. Towards a modelling tool for designing
control mechanisms in network organisations. International Journal of Electronic
Commerce, 10(2):57-84, 2005.

V. Kartseva, J. Hulstijn, J. Gordijn, and YH. Tan. Modelling value-based
inter-organizational controls in healthcare regulations. In R. Suomi, R. Cabral,
J. Hampe, A. Heikkila, J. Jarvelainen, and E. Koskivaara, editors, Proceedings of
the 6th IFIP conference on e-Commerce, e-Business, and e-Government (I3E’06),
volume 226 of IFIP International Federation for Information Processing, pages
278-291. Springer, 2006.

S. de Kinderen and J. Gordijn. Matching complex consumer needs with e-service
bundles. In P. Walden, M. Markus, J. Gricar, and G. Lenart, editors, Proceedings
of the 19th BLED conference, Maribor, SL, 2006. University of Maribor.

S. de Kinderen and J. Gordijn. A consumer needs-driven approach for finding
it-service bundles. Unpublished, 2007.

22

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

C. Kort and J. Gordijn. Modeling strategic partnerships using the e3value ontology
- A field study in the banking industry. 2007. Accepted as book chapter in the
Ontologies Handbook, edited by Peter Rittgen.

A. Osterwalder. The Business Model Ontology - a proposition in a design science
approach. PhD thesis, University of Lausanne, Lausanne, Switzerland, 2004.

V. Pijpers. Alignment through styles and qualities. Master’s thesis, University of
Twente, 2005.

V. Pijpers and J. Gordijn. Bridging business value models and process models
in aviation value webs via possession right. In Proceedings of the 39th Hawaii
International Conference On System Sciences (HICCS). IEEE, 2007.

V. Pijpers and J. Gordijn. Does your role in a networked value constellation match
your business strategy? - a conceptual model-based approach. In M. Markus,
J. Hampe, J. Gricar, A. Pucihar, and G. Lenart, editors, Proceedings of the 20th
BLED conference. University of Maribor, Maribor, SL, 2007.

V. Pijpers and J. Gordijn. E3forces : Understanding strategies of networked e3value
constellations by analyzing environmental forces. In J. Krogstie, A. Opdahl, and
G. Sindre, editors, Proceedings of the 19th International Conference, CAiSE 2007,
Trondheim, Norway, volume 4495 of LNCS, pages 188-202. Springer Verlag, 2007.
M. Shaw. Comparing architectural design styles. IEEE Software, November 1995.
J. Soetendal, J. Gordijn, and E. Paalvast. Governance selection in value webs.
In M. Funabashi and A. Grzech, editors, Challenges of Expanding Internet: E-
Commerce, E-Business, and E-Government. Proc. 5th IFIP Conf. e-Commerce,
e-Business, and e-Government, pages 17-31, Berlin, D, 2005. Springer,.

D. Tapscott, D. Ticoll, and A. Lowy. Digital Capital - Harnessing the Power of
Business Webs. Harvard Business School Press, Boston, MA, 2000.

R.J. Wieringa. Design Methods for Reactive Systems. Morgan Kaufman Publishers,
San Fransisco, CA, 2003.

R.J. Wieringa, H.M. Blanken, M.M. Fokkinga, and P.W. Grefen. Aligning appli-
cation architecture to the business context. CAISE, 2003.

E. Yu. Towards modelling and reasoning support for early-phase requirements en-
gineering. In Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering
(RE’97), pages 226—235, 1997.

