
1

Integral Design of E-commerce Systems: Aligning the Business with
Software Architecture through Scenarios

Jaap Gordijn

Vrije Universiteit
Deloitte & Touche/Bakkenist

Management Consultants
e-mail: gordijn@cs.vu.nl

Hans de Bruin
Vrije Universiteit

e-mail: hansdb@cs.vu.nl

Hans Akkermans
Vrije Universiteit

AKMC Knowledge
hansakkermans@cs.vu.nl

Keywords
Business model, electronic commerce, value chain, value constellation, architecture, software
architecture, Use Case Maps, business process, role-based modelling.

Abstract
Advancements in information and communication technology pave the way for a new class of business
systems: e-commerce systems. These systems differ from traditional business systems in that they
almost constitute the business rather than that they merely support the business of an organization. As a
consequence, business and technology issues are intertwined in such a way that it is not sufficient
anymore to consider them in isolation. For this reason, we argue that an integrated approach to e-
commerce system development is required with which we can assess the impact of a business model
on the information system and vice versa. In our approach, which we call e3-VALUE, an e-commerce
system is considered from three architectural areas: business value, business process, and software
architecture area. These three architectural areas cater for the needs of the various stakeholders
involved in the development process at such an abstraction level that qualitative assessments can be
made without getting buried by details. A scenario-based technique, represented by Use Case Maps
(UCM), is used to relate the different architectural levels. The e3-VALUE approach is illuminated by
means of an elaborated case study. Although it is too early to draw definite conclusions from this and
other case studies that we have conducted, we did learn some important lessons. The first important
lesson is that the case studies suggest that e-commerce systems can indeed be assessed qualitatively at
a high level of abstraction as provided by the three architectural areas. The second important lesson is
that an integrated approach can reveal organisational consequences that are not obvious from a
business model alone.

1 Introduction
Today, we are facing a new and challenging class of information systems: e-commerce information
systems. An important characteristic of these systems is that they are an integral part of the way of
doing business and should reflect the business well. E-commerce systems are not a derivative from
business processes or a-like, but mostly reflect new ways of doing business, enabled by new
technological possibilities. Development of an e-commerce information system is therefore a
continuous process of aligning technical possibilities and business opportunities. Therefore, we argue
that the development of e-commerce business opportunities and their supporting information systems
should be integrated processes, rather than separately or sequentially performed processes. Moreover,
this design should be initially at a global level to allow for early assessment of design alternatives and
communication with all stakeholders.

We address the development of e-commerce systems by a structured approach, called e3-VALUE,
which offers a way of developing new ways of doing business and supporting information systems in
an integrated way. Our approach focuses on a description of three architectural areas representing the
interest of various stakeholders: the business value area, the business process area and the business
software architecture area. Scenarios, represented by Use Case Maps (UCM) [Buhr (1998)], are used to
integrate these architectural areas.

In this paper, we show our e3-VALUE approach by a case study. By developing our three architectural
areas and integrating scenarios we are able to identify design trade-offs between several architectures
for an e-commerce system in an early stage. It is interesting to notice, while we were aiming at

2

assessing the economical and technical feasibility of the e-commerce system, the stakeholders used the
architectures to consider their position in the

This paper is structured as follows. In Sec. 2, we discuss the e3-VALUE framework for e-commerce
applications. Sec. 3 presents the various identified architectural areas and the use of scenarios in more
detail by working out an e-commerce case study. In Sec. 4 we present conclusions and lessons learned.

2 The e3-VALUE framework for e-commerce applications

2.1 Developing e-commerce systems
A commonly used definition for a system is that a system is any actual or possible part of reality that, if
it exists, can be observed [Wieringa (1996)]. An e-commerce system consists of two subsystems: the e-
business system and the e-information system. The e-business system, is comprised of, amongst others,
contracts, legal rules, and organisational structures. These matters are not implemented in a software or
hardware. This in contrast with the e-information system, which consists of the interconnected hard-
and software components.
E-commerce information systems differ from other business information systems in the way they relate
to the business process of a company [Rayport and Sviokla (1995)]. E-commerce information systems
perform most business processes themselves, especially when goods and services are intangibles.
However, most information systems for traditional ways of doing business only support the business
process of company. Because e-commerce information systems are an important part of the way of
doing business, the development of e-commerce information systems requires a tight integration of the
e-business system and the e-commerce system

To address the development of e-commerce systems, we propose a number of architectural areas which
are of relevance for e-commerce systems. To ensure that these areas are integrated we use scenarios as
a glue to interconnect these areas. The areas are not developed in a sequential way but require mutual
adjustment and are developed in iterations and sometimes in parallel [Marco Iansiti and MacCormack
(1997), Gordijn and van Vliet (1999)].

Architectural areas are developed by an architect. He is responsible for the architectural design of a
system, which include (1) designing artefacts, in particular the design of a way of doing business,
business processes and the information systems, (2) communicating an architectural design to the
stakeholders, and (3) supervising the development process.

Using an architectural approach it possible (1) to gain insight at an early stage in the qualities of an
existing system or a system to be, (2) to use an architectural design as a guide for planning and
controlling the subsequent development stages, and (3) to inform the stakeholders about what is built,
the way it is built, and the implications on the current situation.

2.2 Architectural areas for e-commerce systems
In our approach, e3-VALUE, we distinguish the e-business value area, the e-business process area and
the e-business software architecture area, respectively. The business value area shows the way of doing
business and captures business decisions. It consists of actors, activities performed by these and the
exchange of objects of value. Moreover, it imposes requirements to the business process and the
software architecture. The business process area shows which activities are performed by actors and
which information is exchanged between actors as well as usage of resources. The software
architecture, finally, should prescribe requirements for an e-information system implementing
important parts of such a business process.

3

Stakeholder Needs Architectural areas

e-Business
Value
Area

e-Business
Software

Architecture
Area

e-Business
Value

Design Process

e-Business
Process

Design Process

e-Business
Software Architecture

Design Process

Influences

General Managers,
Strategic marketers,

Customers

Marketers,
tactical

 and operational
management

Software
Architecture

Needs

Business
Needs

Business
Process
Needs

Scenarios

Business
architect

process
architect

IT-departement

Software
architect

Legend

Stakeholder
Needs design

process architect

Archi-
tectural

area

e-Business
Process
Area

Requirements
for

e-Business
System

e-Information
System

Commerce
Systems

System

Design processes

Figure 1 E-business design processes produce system requirements in different areas, based on
various stakeholder needs.

2.2.1 E-Business Value Area
The top-level area of interest for our electronic commerce framework concerns the electronic-
commerce business value area. The value area describes the way of doing business between actors, and
so sparks off requirements for the business process and supporting software architecture. It identities
actors being companies, consortia or persons, activities performed by actors and exchange of objects of
value between activities. Stakeholders are general managers of companies participating in the
execution of the business model, marketers and customers. Business developers are the primary
designers of this area.
For the design of such value models is hardly any scientific consensus or sound method available. In
this paper, we present a way to represent such a business value area by identifying core concepts
present in such an area. A key idea of our approach is that structured value analysis is a crucial activity
in business model design. In modelling value, we suggest that a good starting point is found in business
administration literature, in particular work on value creation in micro-economic pricing theory, the
value-chain concept [Porter and Millar (1985)] or, better, the value-constellation notion [Normann
(1994)]. However, a more formal representation of business value areas is needed, and we propose
such a representation in Sec. 3.

4

2.2.2 E-Business Process Area
The e-business process area, the middle level in Figure 1, shows on how activities should be performed
and by whom. Initially, it shows roles to be performed by various actors. These roles can be detailed in
to activities to show the process flow. On the level of roles, we show messages exchanged between
roles performed by actors. Stakeholders are managers on tactical and operational level because they are
responsible for carrying out most processes, and marketers regarding detailed buy and sell flows.
Business process engineers are the most important designers. To represent a business process view a
number of techniques are suitable, for instance UML collaboration diagrams, supplemented with
swimming lanes to represent actors[Fowler and Scott (1997)], or role-based process-modelling
techniques [Ould (1995)].

2.2.3 E-Software Architecture Area
The software architecture area shows how the business model captured in the business value and
process architecture can actually be realized in a software system. A software architecture is comprised
of components that models an e-commerce system at such a level of abstraction that we can evaluate
the consequences of design decisions in terms of quality attributes that are of prime importance in this
particular application area. The stakeholders that are involved in the design of a software architecture
are software developers which include software architectects, software designers and implementers, but
also man-machine interface experts. Business process engineers can be involved to ensure that business
processes are properly implemented in the software architecture.

For our purposes, a software architecture will be primarily developed to assess the feasibility of a
business model. That is, to check whether a business model can be realized in the first place and to
check whether the business goals can be reached. Once feasibility has been demonstrated, both
business and software architecture wise, the software architecture can be elaborated further into an
implementation. The quality attributes that are important include performance, availability,
maintainability, and security. In order to assess an e-commerce application with respect to these
attributes we must develop a view or perhaps multiple views on the software architecture to identify the
relevant components and structures. For e-commerce applications, the components that are of interest
typically consist of databases, WEB-servers, and networks that are structured following proven
architectural styles (also referred to as patterns) such as the 3-tier architectural style.

2.3 Scenarios: Use Case Maps
The three architectural areas need to provide an integrated, consistent, view on the commerce system
rather than views on their own. In our approach we represent the relations between these areas through
scenarios. For each architectural area, we show the same set of scenarios. Scenarios are represented by
Use Case Maps (UCM) [Buhr (1998)]. A UCM is a visual notation to be used by humans to understand
the behavior of a system at a high level of abstraction. It is a scenario-based approach showing cause-
effects by traveling over paths through a system. The semantics of UCMs are not defined clearly and
have to be tailored to the architectural area they are being applied to. If applied in combination with
business models, UCMs model causal exchanges of values between actors. For a particular scenario, a
UCM shows which values are exchanged between which actors. In the case of business processes,
UCMs show the causal exchange of messages between activities. In the realm of software systems,
they bridges the gap between global requirement analysis models (e.g., use cases and class diagrams)
and very detailed design models (e.g., interaction diagrams such as collaboration and message
sequence diagrams) by showing coarse-grained behavior of interacting software components. An
important feature of a UCM is that it can show multiple scenarios in one diagram and the interactions
amongst them. This makes them well suited to depict architectural designs focusing on the behavioral
aspects of a system.

The basic UCM notation is very simple. It is comprised of three basic elements: responsibilities, paths
and components. The term component should be interpreted in the broadest sense. It may be a software
component, but it can also represent a human actor or a hardware system. A simple UCM exemplifying
the basic elements is shown in Figure 2. A path is executed as a result of the receipt of an external
stimulus. Imagine that an execution pointer is now placed on the start position. Next, the pointer is
moved along the path thereby entering and leaving components, and touching responsibility points. A
responsibility point represents a place where the state of a system is affected or interrogated. The effect
of touching a responsibility point is not defined since the concept of state is not part of UCM.
Typically, the effects are described in natural language. Finally, the end position is reached and the

5

pointer is removed from the diagram. A UCM is concurrency neutral, that is, a UCM does not prescribe
the number of threads associated with a path. By the same token, nothing is said about the transfer of
control or data when a pointer leaves one component and (re-)enters another one. The only thing that is
guaranteed is the causal ordering of executing responsibility points along a path. However, this is not
necessarily a temporal ordering, the execution of a responsibility point may overlap with the execution
of subsequent responsibility points.

r3
r4

r2

r1

Figure 2 A basic UCM

A more realistic example is shown in Figure 3 depicting a distributed client-server system.
Because the client communicates with the server over a network that can fail occasionally, a proxy
server is included to provide transparent access to the real server. The proxy server is modeled as a stub
for which two implementations are given: a transparent proxy server which passes the requests to and
the replies from the server unaltered thereby denying the possibility of network failures, and a proxy
server with a timeout facility with which failures are detected. The notation used in the figure is
supposed to be self-explanatory.

6

a b

cd

Client Proxy Server Network Server

a

d

b

c

a b

cd

Proxy
Server
Stub

Watchdog Proxy Server

Transparent
Proxy Server

entering
path

clearing
path

continuing
path

timeout
path

waiting place
(with timeout)

failure point
(possible failure)

OR-join OR-fork

continuing
paths

AND-fork

Notation

Figure 3 A UCM depicting a client-server system

It is interesting to see that many things are unspecified in UCMs, but the intended meaning is suggested
strongly. For instance, distribution aspects (e.g., connection mechanism and the amount of concurrency
in a component) are not dealt with. However, the client, the server and the proxy server are distinct
components that are connected by a network, which is also modeled as a component. By using these
names, it is natural to assume that the components are distributed over a number of computer systems.
But again, it is not specified, it is all in the eye of the beholder.

The UCM notation is quite rich and supports also the creation and the deployment of dynamically
created components (see Figure 4). This is referred to as structural dynamics. Components can be
stored in pools for later use, but only if they are moved in slots. Once they have performed their duty,
they can be moved out of their slots to be destroyed or to be restored in a pool. An interesting
application area of pools is to model a limited set of resources. A scenario in progress can only remove
a resource form a pool if one or more resources are in it, otherwise the scenario will wait until a
resource has been restored into the pool by another scenario.

7

pool

store component
in the pool

retrieve component
from the pool

slot

put component
in a slot

create component remove component
from a slot

+

-

destroy component

Figure 4 The usage of pools in UCM

3 The e3-VALUE framework illustrated by an e-commerce case study

3.1 Case outline
The Ad Association is a company which co-ordinates more than 150 local free ad papers called FAPs.
FAPs produce (non-electronic) papers with ads. These FAPs are located world-wide. They are
independent, often privately owned organisations. A FAP serves a geographical region, for instance a
large city or a county. The handling of ads is as follows. A customer submits an ad to a FAP. The FAP
checks the ad (e.g. for absence of dirty language and for style) and places the ad in its next issue. It is
possible to place an international ad. In this case, the FAP to which the ad was submitted distributes the
ad to other FAPs (serving different geographical regions). These other papers publish the ad as soon as
possible. Placement of an ad is for free. However, a person who wants to read an ad has to pay a FAP
by buying its paper. The exchange of international ads between FAPs is nearly for free. FAPs are only
charged for the use of a common infrastructure which is offered by the Ad Association. The Ad
Association carefully analysed the international ads. They concluded that international ads are mostly
contact ads. In a contact ad, someone is searching for another person. The Ad Association is
considering an Internet-based service for international contact ads. A number of business objectives are
important. First, FAPs wants to protect the current market share of world-wide (paper-based) contact
ads. FAPs are afraid of new parties entering the arena of international contact ads. They are especially
afraid of competitors which are capable of setting up a world-wide Internet-based contact service. Ad
papers want to exploit their local trusted brand names now to establish a trustworthy internet based
contact ad service before someone else does. Thus, the development of a contact service has rather
defensive objectives. Second, FAPs want to enlarge the market share of ads by exploiting yet another
communication channel. Third, FAP wants to attract customers to their existing ad papers by offering a
full service spectrum, amongst others, placement of an ad on the Internet.

The next sections show for this case the architectural areas in more detail. We work out one business
value model and business process model. Other options are considered in [Gordijn et al. (1999)].
Subsequently, we show three software architectures that all realize the given business value and
process model. The goal here is to show feasibility, from an economical as well as a technical
perspective.

3.2 e-business value area
We propose that the central concept in any representation of the way of doing business is that of a
value activity. A value activity is performed by actors and aims at producing material or immaterial
objects that are of value to others. This notion of value activity is recognised in, e.g., [Porter and Millar
(1985), Normann (1994), Kaplan and Norton (1996)]. Value activities as specified in [Porter and Millar
(1985)] can be connected to form a value chain. At the macro-level, we can use these concepts to
specify a business value model. However, from micro-economics theory, interesting concepts can be
borrowed in the field of pricing theory [Choi et al. (1997), Hagel III and Armstrong (1997), Shapiro
and Varian (1999)]. In particular, these authors consider extracting the maximum price a customer is
willing to pay as one of the challenges of electronic commerce applications. They propose to do this by
offering each customer a specific tailored version of a product to each customer. We use these macro-
and micro-concepts, as well as our consulting experience in designing electronic commerce
applications, to derive a small set of below discussed core concepts needed to represent a semi-formal
business value model.

8

Actor. An actor is an independent entity such as a company or a person. Actors perform one or more
value activities. In our case, the following actors participate: (1) contact searcher, (2) FAPs and (3), Ad
Association.

Value activity. A value activity represents a process which adds value. Actors perform these value
activities. An actor can perform multiple value activities, but a particular value activity is performed by
one actor only. When developing business value models, we are primarily interested in finding chunks
of activities that add value and in studying the various possible assignments of these activities to
different actors. These reflect important business decisions. Value activities for a specific case are
specialisations of the value-activity concept. The granularity of defining value activities should be such
that they can be performed technologically and economically independently from other value activities
[Porter and Millar (1985)], and that they cannot be further decomposed into smaller activities that can
be assigned to different actors. Instances of specialised value activities are mapped onto the set of
actors. Constructing these value activities and mapping of its occurrences onto actors is an important
part of the electronic commerce design problem.

In the Ad Association case, we distinguish the following value activities. The (1) place ad and (2) read
ad value activities represent activities typically performed by contact searchers. Value activity (3), ad
intake, executes placement of an international ad. Value activity (4), check ad, checks an ad for correct
use of language. Value activity (5), publish ad, offers a reading service of ads to contact searchers.
Value activity (6), redistribute ad, receives an ad from a FAP and redistributes this ad to other FAPs.

Many assignments of value activities to actors are possible. We choose for an assignment that closely
resembles the current practice of the Ad Association (Table 1).

Value activity Actor
Place ad Contact searchers
Read ad Contact searchers
Ad intake FAPs
Check ad FAPs
Publish ad FAPs
Redistribute ad Ad Association

Table 1 Assignment of value activities to actors

Value object and value object type. A value object is what is produced or consumed by a value
activity. Value objects are the things that are exchanged between value activities. A value object type
denotes the type of asset which is created or used by a value activity. A value object type refers to a
type of (digital) good, a service type, or type of money [Choi et al. (1997)], for instance token-based or
notational money [Camp (1996)]. A value object has one value object type.

Value port. We further need a formal way to indicate how value activities can be connected to each
other in a component-based and (re)configurable manner. Here, we introduce the concept of ports, a
notion known from general and technical systems theory (as a helpful analogy, think of a wall outlet
for electricity; it has two ports). A value port, then, denotes a connection point of a value activity that
defines how it may be connected to the external world of other value activities. On a value port, value
objects are exchanged. A value port has exactly one value object type. Value objects can flow into a
value activity or away from a value activity via a port. This direction is modelled as a property of the
value port. A value port can have various properties such as a price or price range for the value object.
Note that a property such as a price is seen as a property of the port and not of the value object, because
other actors may offer the same value object for a different price.

Value interface. Value ports are grouped into value interfaces. A value interface represents a
commerce service offered to or requested from a value activity. It consists of at least one value port. A
value interface having only one value port can be used to model a value activity which produces value
objects for free. In other cases, we have two ports; one value port for the outgoing good or service to be
sold and one value port for the incoming payment (not necessarily money, for instance in some cases
one can pay with privacy information). Finally, one can think of more than two ports in an interface, to
model the business concept of bundling [Choi et al. (1997), Shapiro and Varian (1999)]. Bundling
refers to the situation that a customer buys a number of products or services (the bundle) as a whole

9

and pays for this bundle as a whole. The opposite situation also can occur: in these case multiple
payment instruments are used. A value activity may have multiple value interfaces. Two motivations
for having multiple interfaces exist. Firstly, a value activity typically requests (buys) value objects from
actors and uses these objects to create and sell other value objects, mostly to other actors. The value
activity has in this case two faces to its environment: one as a buyer and one as a seller. For each, a
value interface is available defining the commerce service requested or offered. Secondly, multiple
versions of equally typed value objects can be sold against different terms and in different bundles to
address price and product differentiation [Shapiro and Varian (1999), Hagel III and Armstrong (1997),
Choi et al. (1997)]. Versioning, bundling and different terms are ways to implement value-based
pricing. With value-based pricing, a seller tries to extract as much value from the buyer as possible, by
making an offer that is targeted to the specific customer. We employ different value interfaces to model
the situation that a value object is offered in different versions, bundles and with different terms since
they are different commerce services. A value interface also prescribes the value ports of value
activities which can be interconnected. A connection between two ports of different value interfaces
can only be made if these value interfaces match. Interfaces match if for each value in-port in an
interface, a corresponding value out-port in the other value interface can be found and vice-versa, and,
for each set of connected value ports, the value ports have the same type. On a value interface a number
of rules and constraints can be defined. For example, consider a time-ordering rule stating that a
customer has to pay on a value port first and subsequently receives the good (pre-payment) or vice
versa (post-payment) via another value port.

For the Ad Association case, value interfaces, value ports and value object types are concisely
presented in Table 2.

 Value
activities

Value interfaces consisting of value ports with
value object type

1 Place ad In port: Placed ad of type ad
 Out port: Submitted ad of type ad
2 Read ad In port: Read ad of type ad
 Out port: Payment for reading ad of type money
3 Ad intake In port: Submitted ad of type ad
 Out port: Placed ad of type ad
 In port: Checked ad of type ad
 Out port: Payment for checking ad of type money
 In port: Payment for sending ad of type money
 Out port: Sent ad of type ad
4 Check ad In port: Payment for checking ad of type money
 Out port: Checked ad of type ad
5 Publish ad In port: Received ad of type ad
 Out port: Payment for receiving ad of type money
 In port: Payment for reading ad of type money
 Out port: Read ad of type ad
6 Redistribute ad In port: Received ad of type ad
 Out port: Payment for received ad of type money
 In port: Payment for sending ad of type money
 Out port: Sent ad of type ad

Table 2 Specific value activities, value interfaces, value ports and value object types for the FAP
centred business value model.

We have developed a technique to graphically represent the business value model. The Ad Assocation
business value model is illustrated in Figure 5. Note that this figure also shows scenarios as illustrated
below.

Value scenario. A value scenario shows the causal sequence of value exchanges for typical real-life
cases. A scenario consists of a path to come from a start point to an end point. It is possible to have
more than one path from a start point to an end point, resulting in more than one scenario. Such a
situation exists if the path has an OR-fork. A scenario can split in multiple sub-scenarios using an AND
fork. In such a case, a scenario has multiple end-points.

10

For the Ad Association case, we distinguish the following main value-scenarios: (1) place ad, (2)
distribute ad, and (3) read ad.

 Ad intake

FAP
FAP

FAP

Customer
Customer

Contact searcher

Stacked actor
Relation
between value
ports (including
type of value object

A single
actor

Legend

Customer
Customer

Contact searcher

Customer
Customer Contact searcher

ad

ad ad ad ad ad

$

$

ad

Value interface

out
port

in
port

Place ad Read ad Place ad Read ad

Value
activity

ad

ad

Ad intake

Check ad

Publish ad $

$

ad

Check ad

Publish ad

$

$

$

scenario path

start of scenario path

end of scenario path

And Join

Ad Association

Redistribute ad
ad

Failure

Figure 5 Bussiness value area of the Ad Association – place ad scenario

The value scenario (1), placement of ad, is presented in Figure 5 and starts at the upperleft corner. The
contact searcher places an ad which is the first value exchange between contact searcher and FAP.
Next, the scenario chooses one of two paths to continue for checking an ad for correct use of language.
If the first route is chosen, the ad is checked by the same FAP who performed the ad intake value
activity; following the other route, another FAP checks the ad. In both cases, two value exchanges
occur: the FAP who performs the ad intake, pays the FAP who checks the ad. Now, the ad has been
approved and can be published. The scenario continues with an AND fork, and therefore splits in two
sub-scenarios. One sub-scenario models that the ad is published by the FAP and the other sub-scenarios
shows that the ad is redistributed to other FAPs. Both sub-scenarios result in the same type of value
exchanges: the FAP who performs the take in, receives money for each ad he delivers. Hereafter, the
last value exchange occurs: the FAP who takes in the ad, delivers value the contact searcher because
his ad is placed successfully.

In some cases, a submitted ad an be rejected for reasons of bad language. This is modeled by the earth
symbol (taken from electrical wiring diagrams) which in UCM represents a failure point. In such a
case, the scenario terminates. Note that a submitted ad is exchanged between contact searcher and a
FAP but that the ad is of no value to the FAP. However, this only can be determined after checking the
ad. To put it differently, this is a loss situation for both the contact searcher (his ad is not placed) and
the FAP (an ad has been checked that will not generate money).

11

ad $

Ad Association

Redistribute ad

FAP
FAP

FAP A

ad

Ad intake

Check ad

Publish ad $

$
ad

FAP
FAP

FAP B

ad

Ad intake

Check ad

Publish ad $

$
ad

Figure 6 Business value area of the Ad Association – distribute ad scenario

Scenario (2) in Figure 6, distribute ad, shows value exchanges which occur between the actor
responsible for redistribution of the ad, and FAPs. The Ad Association distributes the same value
object (the ad) multiple times to different FAP. For distributed ad to a FAP, two value exchanges
occur: (1) the Ad Assocation receives an amount of money in return for (2) the ad.

FAP
FAP

FAP

Customer
Customer

Contact searcher

ad

$

Read ad

ad

Ad intake

Check ad

Publish ad $

$
ad

Figure 7 Bussiness value area of the Ad Association – read ad scenario

Scenario (3), Figure 7, read ad, has two value exchanges: (1) the contact searcher receives an ad from a
FAP, and (2) pays for it.

Scenarios can be used to evaluate properties of the business value model, for instance the profitability
of carrying out the scenario. On the business value level, we can get only get a first sight on this. We
detail the evaluation during business process and software architecture design. Table 3 and Table 4
present sales revenues and costs for the various actors per scenario.

Sales↓ Actor→ FAP A Other FAP Ad Association Contact searcher
Place ad Redistribute ad

feeAd Assocation
Check ad feeFAP A - -

12

Redistribute ad - ΣRedistribution
feeother FAPs

-

Read ad Read feecontact searcher - -
Table 3 Sales revenues for each actor per scenario

Subscripts denote the direct source of the sales revenue. Most table entries speak for themselves. Note
that in the place ad scenario, it possible that a different FAP from the FAP who handles the take in of
an ad, earns money by checking ads.

Costs↓ Actor→ FAP A Other FAP Ad Association Contact searcher
Place ad Check ad feeself or

other FAP

- Redistribution
feeFAP A

-

Redistribute ad - Redistribute ad
feeAd Assocation

 -

Read ad - - - Read ad feeFAP

Table 4 Costs for each actor per scenario

Note that costs involved in checking an ad by the FAP who performs the take-in of an ad can differ
from costs for checking an ad by another FAP. For the redistribute ad scenario, there is a redistribution
fee to be paid to the ad association by each FAP receiving the ad and a redistribution fee to be paid by
the Ad Assocation to the FAP sending the ad. The first fee is higher than the second fee.

3.3 e-business process model
The e-business process model illustrates processes to be carried out by actors, and messages
interchanged between those actors, on a conceptual level. If important, usage of (human) resources are
shown. A number of techniques have been developed to model business process adequately, amongst
others UML activity diagrams with swimming lanes to represent actors [Fowler and Scott (1997)], or
role-based process-modelling techniques [Ould (1995)]. In this paper, we choose for the latter. In Ould
(1995)], a role is defined as a set of activities that are carried out by an actor in an organisation. An
activity is what actors do in their roles. Between activities and therefore between roles interactions can
occur. An interaction is an coordination between activities which has no implied direction. An
interaction with no direction between two activities for instance might model to agree on something.
However, interactions also can model exchange of something between activities, for instance goods or
messages.

Figure 8 shows a process model which corresponds to the business value model. We show roles
performed by actors and their interactions. Ould offers also facilities to do detailed process modeling.
Working out a detailed process model can be done in a subsequent stage, but for now, the actors, roles
and actors provide sufficient detail. The process model is illustrated by using scenarios.

As a starting point, we use the scenarios identified in the business value model: place ad, redistribute
ad and read ad. Value activities are mapped on roles. Value exchanges are candidates for interactions
between roles. However, value exchanges are not equal to interactions. Value exchanges denote things
of value to (other) actors which do not always result in interactions between actors directly. On the
other hand, interactions may be introduced which do not have their counterpart in value exchanges. In
this process model, value exchanges regarding payments between value activities which are performed
by the same FAP do not have counterparts in interactions. We assume a FAP is a administrative unit,
so payments within a FAP are not handled. Some interactions are new, for instance the query asked by
a contact searcher to a FAP, and the ad to be checked. The same scenarios as in the business value
model are shown, however the paths now show a sequence of interactions between roles.

We use UCM-pools to show the use of precious resources by an activity. In Figure 8, a pool is used to
show that for ad checking, a person is necessary. On the scenario path, a person is retrieved from a
resource pool. After checking the ad, the person is placed back in the resource pool .

Note the synchronization bar (with the N:1 indication) in the redistribute ad and the publish ad activity.
This bar means in case of the redistribute ad activity that a number of ads are collected, before paying
for them. So, only one payment has to be made for a large number of ads. This refers to a mechanism
of aggregate payment [Choi et al. (1997)]; it is much cheaper to handle one big payment instead of a
large number of small ones. The same holds for the publishing ad activity.

13

After making the business process model, we evaluate the scenarios with respect to income and
expense again. The table below show extra expenses or expense refinements per scenario. The
incoming remain as in Table 3.

Subscripts denote the direct source of the cost. Most table entries speak for themselves. Note that in the
place ad scenario, it possible that a different FAP from the FAP who handles the take in of an ad, earns
money by checking ads.

Cost↓ Actor→ FAP A Other FAP Ad Association Contact searcher
Place ad Check ad fee

personal cost

- - -

Redistribute ad - Redistribute ad fee Redistribution fee -

Ad Assocation FAP Contact searcher

Placing
ad Taking in ad

Checking ad

Publishing
ad

Reading
ad

Redistributing
ad

ad

confirmation/reject

ad

ad

checked ad
payment

ad
checked ad

payment

ad ad

ad

payment

query
read

redistribute

place

checked
ad

Legend

Role

interaction

to/from other FAPs

Actor

scenario path

start of scenario path

end of scenario path

AND FORK

Join

ad

payment

payment

Pool

to/from other FAPs

checker

N:1

N:1

Figure 8 Business process model of the Ad Assocation

14

per N ads Ad Assocation per N adsFAP A
Read ad - - - Read ad feeFAP

Table 5 Costs for each actor per scenario

3.4 e-software architecture
Typically, many software architectures can be devised that all realize a given business value and
process architecture. The usual approach is to start with a number of candidate architectures and to
perform an evaluation to pinpoint the most promising architecture, which is then elaborated further.
Candidate architectures are usually based on architectures that have worked well in similar situations.
Also, previous experiences of the architect may play a dominant role in selecting candidate
architectures [Bass et al. (1997)]. This is not necessarily a bad thing. The point is that we do not have
to design the best architecture (provided there is one), but rather an architecture that satisfies the preset
requirements.

The candidate software architectures will be evaluated by taking the following quality attributes into
account.

Performance. FAPs should respond quickly to requests for reading Ads. Note that the placement of
Ads may take some time, since a client usually offers a single Ad and this Ad will be checked for bad
language by a human.

Availability. It should be clear that a FAP should be accessible at all times in order to be competitive.

Maintainability. The nature of e-commerce applications will change rapidly as new business value
models emerge and new technologies are developed that enable different approaches to doing business.
Therefore, the software architecture must be designed with maintainability in mind.

Security. Since we are dealing with confidential information and electronic payment, security issues
must be addressed to establish a sufficient safety level.

More quality attributes could be added to this list. We refrain from doing so because the intent is to
show the approach to software architecture by taking the FAP case as an example. Adding more quality
attributes does not help in further clarifying the approach.

Two candidate software architectures will be presented for the Ad Association case. Both are based on
a 3-tier architectural style in which a system is decomposed into three components, (1) the database, (2)
the business logic, and (3) the user interface. This division emphasizes the principle of separation of
concerns: a component should be responsible for one task only. Adhering to this principle minimizes
the impact of change of one component on other ones. In addition, a 3-tier architectural style caters for
distribution and scalability.

A software architecture should be capable of dealing with our previous identified scenarios: place ad,
redistribute ad and read ad. The following two architectural variations have been designed: (1) a
decentralized database (Figure 9) and (2) a centralized database (Figure 10). In the first alternative,
each FAP maintains its own set of Ads that are offered to its clients while in the second alternative, the
Ad Association maintains the set of all Ads. A client’s request for an Ad will be forwarded by a FAP to
the Ad Association.

For the sake of clarity, value exchanges (e.g., an amount of money in return of a delivered product or
service) have not been modeled explicitly in the software architectures. A connection between
components represents a complete value exchange as is being modeled in the business value
architecture area.

15

User Interface

Place Ad

User Interface

Read Ad

Network Network

Redistribute Ad

Ad Association

NetworkNetwork

Database
Server

Ad Intake

Publish AdCheck Ad

WEB: Front End
Place Ad

WEB: Front End
Read Ad

Search Ad

FAP

Database
Server

Ad Intake

Publish AdCheck Ad

WEB: Front End
Place Ad

WEB: Front End
Read Ad

Search Ad

FAP

business logic business logic

Message
Server

Figure 9 A decentralized architecture.

User Interface

Place Ad

User Interface

Read Ad

Network Network

Publish Ad

Ad Association

NetworkNetwork

Ad Intake

Publish AdCheck Ad

WEB: Front End
Place Ad

WEB: Front End
Read Ad

Search Ad

FAP

Database
Server

Ad Intake

Publish AdCheck Ad

WEB: Front End
Place Ad

WEB: Front End
Read Ad

Search Ad

FAP

business logic business logic

Search Ad

Network

Figure 10 A centralized architecture.

Note that for the centralized architecture, the redistribution scenario and the read ad scenario are
represented using one UCM path. Also note that each ad is redistributed on demand of the reading
contact searcher while an FAP only pays once for an ad.

Having devised two candidate software architectures, we are now in the position to compare them. The
pros and cons of these two software architectures with respect to the quality attributes are summarized
in Table 6. It is beyond the scope of this paper to compare the three architectures in detail since this
requires detailed knowledge of the components involved (e.g., performance and availability figures of
database servers). In general, however, one can say that the decentralized database solution is better
than the other solution as far as performance, availability and security are concerned. However, the
centralized database solution is easier to maintain, since it is easier to upgrade a single site than having

16

to maintain a distributed solution. But again, detailed insight in the components being deployed is
required to substantiate these claims.

 Decentralized Centralized
Performance + −
Availability + −
Maintainability − +
Security + ±

Table 6 Comparing three different architectures

By adding weight factors to quality attributes, we can pinpoint the best software architecture from a
technical point of view. However, as will become apparent in the next section, this is not necessarily
the software architecture that will be elaborated further.

3.5 Evaluation
In the previous section we have seen how candidate software architectures can be evaluated from a
technical point of view by taking quality attributes like performance, availability, maintainability, and
security into account. However, the technical point of view is not the only view to consider. As
remarked before, a software architecture should support the business. The prime view from the
business perspective is an economical one. In particular, the costs are crucial. For this reason, the costs
involved in a software architecture should be assessed. It is important to realize that these costs can
only be identified by actually designing software architectures.

In Table 7 and Table 8 we have accounted for the costs for implementing software architectures based
on a decentralized and centralized solution, respectively. Note that sales revenues already have been
identified in the business model. We distinguish the following costs: (1) network costs, (2)
webserver/application costs, (3) database costs, and (4) message costs. The network costs involve costs
to communicate via a computer network with another actor. We assume that communication is handled
via the Internet. This requires an Internet connection which has a low, medium or high bandwidth
consumption for the particular scenario. The classification of a scenario into one of these three
connection classes depends on the bandwith consumption per scenario and the volume of the scenario
executions in a timeframe. We assume that the number of times ads are read exceed the number of
times ads are placed. Furthermore, we assume that a placed ad needs to redistributed to each FAP. We
relate the three classes of connection to respectively low, medium or high network costs. The
webserver/applicationserver costs represent costs involved in the business logic layer. The database
server costs comprise all costs for having a local or central database server. Finally, for the
decentralised scenario, we assume a message server (e.g. an SMTP server), which introduces costs. All
these costs are accounted for on a per scenario basis. This means that no fixed costs exists, these are
allocated to each individual execution of a scenario, based on the expected number of executions per
time-frame.

Notice that web/application server, database server, message server and network server are not part of
the business value model, so their impact on the costs cannot be assessed by evaluating a business
value model in isolation.

Costs↓ Actor→ FAP Ad Association Contact searcher
Place ad FAP handling placing ad:

Web/application
Check ad feeself or other FAP
Low network(for remote checking)
Medium network(for distribution from FAP
to AA)

Redistribution
feeFAP placing
Medium
network(for
distribution from
FAP to AA)

Low network

Redistribute ad FAP receiving the ad:
Redistribute ad feeAd Assocation
Database
Medium network (for distribution from AA
to FAP)

Medium network
Message

-

Read ad FAP offering reading the ad:
Web/application
Database
High network

- Read ad feeFAP
Low network

17

Table 7 Decentralized database software architecture

Costs↓ Actor→ FAP Ad Association Contact searcher
Place ad FAP handling placing ad:

Web/application Check ad feeself or other FAP
Low network(for remote checking)
Medium network(for distribution from FAP
to AA)

Redistribution
feeFAP A
Medium network(for
distribution from
FAP to AA)

Low network

Redistribute ad
and read ad

FAP receiving the ad and offering reading:
Redistribute ad feeAd Assocation
Web/application
High network

Database
High network

Read ad feeFAP
Low network

Table 8 Centralized Database Software Architecture

From these tables the following observations can be made.

Ad Association perspective. If we assume that network costs are much cheaper than database server
costs, and we assume that a message server is much cheaper than a database server, the redistribution
costs in the centralized solution are greater than the redistribution costs in the decentralized solution.
This assumption about network and database server costs seems valid. There is trend that network costs
will be eliminated altogether in the future because of the liberalization of the telecom market. The
second assumption is reasonable too. A mail server can be implemented using a low-cost machine with
nearly free software. A databaseserver which is capable of a large number of queries and updates per
minute, is a high investment, both in hardware and software. Also maintenance costs are substantial,
for instance for performance tuning. Recall that redistribution costs are charged to FAPs and
eventually the Ad readers. It is interesting to observe that the Ad Association becomes a more
dominant player in the centralized database solution, that is, more cash is flowing towards the AA.

FAP perspective (in the role of offering a read ad service). The database costs in the centralized
solution are less than the database costs in the decentralized solution under the assumption that a single
database server is cheaper than N smaller database servers having the same total capacity as the single
server. If we neglect the network costs, the FAPs costs are predominated by the database costs, and
therefore, the centralized database solution is most cost-effective.

FAP perspective (in the role of handing placement of an ad). The costs are indifferent with respect to
the two software architectures.

An interesting conclusion that can be drawn from these observations is that from an cost-based point of
view the centralized database architecture is a better solution for everyone. However, as discussed in
the previous section, from a technical point of view one should favor the decentralized database
architecture. Of course, it is possible to invest in a more powerful and fault-tolerant database server and
in high-speed networks connecting the FAPs with the Ad Association in order to offer a centralized
solution that is on par with the decentralized solution. However, this involves additional costs, which
have to be analyzed carefully.

In discussing these results with a number of FAPs and the Ad Association it seemed that, besides cost
considerations, other issues are important in deciding for a centralized or decentralized variant. In the
centralized variant, the value activity redistribute ad increases in importance, on the expense the value
activity publish ad performed by FAPs. It can be seen as a shift in power from FAPs to the Ad
Association if choosing for the centralized variant and therefore some FAPs are not in favor of the
centralized variant, despite the decreasing costs for them. Also, it is not clear what the business
consequences are if a cheaper (centralized) solution will be chosen. Does the contact have to pay less
compared to the decentralized variant? Or makes the Ad Association more profit?

Apart from the aforementioned emotional considerations, the important thing is that the e3-VALUE
framework provides the means to play what-if games on objective grounds.

4 Conclusions and Lessons Learned
We have argued that e-commerce system should be designed from different perspectives, which we call
architectural areas. We have identified three architectural areas that we consider crucial for the
development of e-commerce systems. The e-business value model enabled us to discuss with

18

stakeholders the objects of value offered to customers and the assignment of value adding activities to
actors. The e-business process area detailed the e-business value model in message exchanges between
roles performed by actors. It clarifies which value exchanges map onto the actual messages being sent
and the usage of resources. The e-software architecture shows the possible realizations of the value and
process model by means of software and hardware components.

We used scenarios (UCMs) to relate the architectural areas and to assess the economical en technical
feasibility of the commerce system. By assessing the scenario for each architectural area, we gained
global insight in costs involved when realizing the commerce-system, without loosing ourselves in
details.

However, the designs revealed an unexpected characteristic of the commerce system to the
stakeholders. The centralized variant was, despite its lowest costs, not the most interesting alternative
for all stakeholders, because it implies a shift in power from local FAPs to the Ad Association. This
was not visible at the e-value model level at a first sight.

References

 1. L. Bass, P. Clements, R. Kazman, 1997. Software Architectures in Practice. Reading,
Massachusetts: Addison-Wesley.

 2. R. J. A. Buhr ,1998. Use Case Maps as Architectural Entities for Complex Systems. IEEE
Transactions on Software Engineering Vol. 24(No. 12):1131-55.

 3. L. J. Camp, 1996. Privacy & Reliability in Internet Commerce. Pittsburgh: Carnegie Mellon
University, School of Computer Science.

 4. S.-Y. Choi, D. O. Stahl, A. B. Whinston, 1997. The economics of doing business in the
electronic marketplace. Indianapolis: Macmillan Technical Publishing.

 5. M. Fowler, K. Scott, 1997. UML Distilled - Applying the Standard Object Modeling Language.
Reading, Massachusetts: Addison-Wesley.

 6. J. Gordijn and J.C. van Vliet ,1999. On the Interaction between Business Models and Software
Architecture in Electronic Commerce. To Be Presented on the European Software Engineering
Conference '99, Toulouse .

 7. J. Gordijn, J.M. Akkermans and J.C. van Vliet ,1999. Requirements for e-commerc applications
are created rather than elicited. NOSA'99 - Proceedings of the second nordic workshop on
software architecture. J. Bosch, Ronneby, Sweden.

 8. J. Hagel III, A. G. Armstrong, 1997. Net Gain - Expanding markets trough virtual communities.
Boston Massachusetts: Harvard Business School Press.

 9. R. S. Kaplan, D. P. Norton, 1996. The Balanced Scorecard. Boston, Massachusetts: Harvard
Business School Press.

 10. Marco Iansiti and A. MacCormack ,1997. Developing products on the Internet Time. Harvard
Business Review (September-October 1997).

 11. R. R. R. Normann, 1994. Designing Interactive Strategy - From Value Chain to Value
Constellation. 2 ed. Chichester: John Wiley & Sons.

 12. M. A. Ould, 1995. Business Processes - Modelling and Analysis for the Re-engineering and
Improvement. Chichester, England: John Wiley & Sons Ltd.

 13. M. E. Porter and V.E. Millar ,1985. How information gives you competitive advantage. Harvard
Business Review (July-August 1985):149-60.

 14. J. F. Rayport and J.J. Sviokla ,1995. Exploiting the Virtual Value Chain. Harvard Business
Review (November-December 1995).

 15. C. Shapiro, H. R. Varian, 1999. Information Rules. Boston, Massachusetts: Harvard Business
School Press.

 16. R.J. Wieringa (1996). Requirements Engineering: Frameworks for Understanding. John Wiley
& Sons Ltd., Chichester.

	Abstract
	Introduction
	The e3-VALUE framework for e-commerce applications
	Developing e-commerce systems
	Architectural areas for e-commerce systems
	E-Business Value Area
	E-Business Process Area
	E-Software Architecture Area

	Scenarios: Use Case Maps

	The e3-VALUE framework illustrated by an e-commerce case study
	Case outline
	e-business value area
	e-business process model
	e-software architecture
	Evaluation

	Conclusions and Lessons Learned

